

Exercises N8 08.04.2025 ThermoElectroMechanics

In all the exercises, the material used is BaTiO_3 in its tetragonal phase $4mm$. The 4-fold axis is always directed along the x_3 axis. You may use the table of values for BaTiO_3 given below if needed.

s_{11}	$8.05 \times 10^{-12} \text{ m}^2/\text{N}$	d_{15}	$392 \times 10^{-12} \text{ C/N}$
s_{12}	$-2.35 \times 10^{-12} \text{ m}^2/\text{N}$	d_{31}	$-35 \times 10^{-12} \text{ C/N}$
s_{13}	$-5.24 \times 10^{-12} \text{ m}^2/\text{N}$	d_{33}	$86 \times 10^{-12} \text{ C/N}$
s_{33}	$15.7 \times 10^{-12} \text{ m}^2/\text{N}$	K_{33}	150
C	$2.42 \times 10^6 \text{ J}/(\text{m}^3 \cdot \text{K})$	p_3	$-5 \times 10^{-4} \text{ C}/(\text{m}^2 \cdot \text{K})$
α_3	$3.5 \times 10^{-5} \text{ 1/K}$		

8.1. The effect of mechanical conditions on the pyroelectric response is measured. To do it, the (001) surfaces of the parallelepiped BaTiO_3 sample are covered with electrodes, and the change of the surface charge, driven by the temperature change, is measured (Fig.1).

In measurement (a), the sample is kept mechanically free.

In measurement (b), the sample is kept mechanically free in the x_1 and x_2 directions, while the motion in the x_3 direction is blocked.

Find the difference between the pyroelectric coefficients $p_{(a)}$ and $p_{(b)}$ measured these two ways (provide the answer in the analytical form)

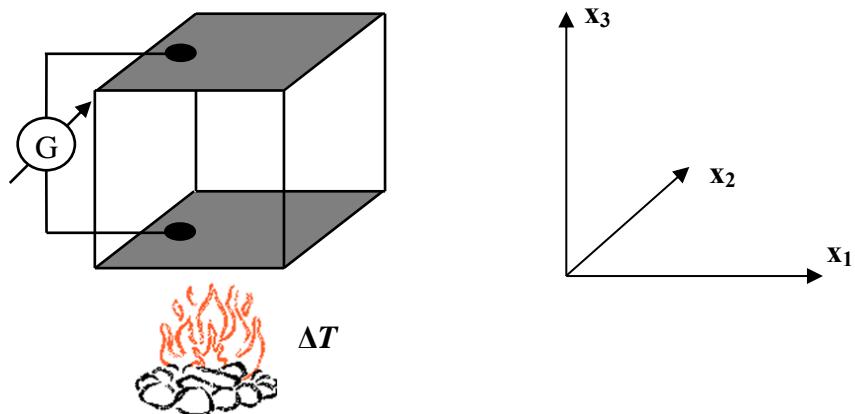
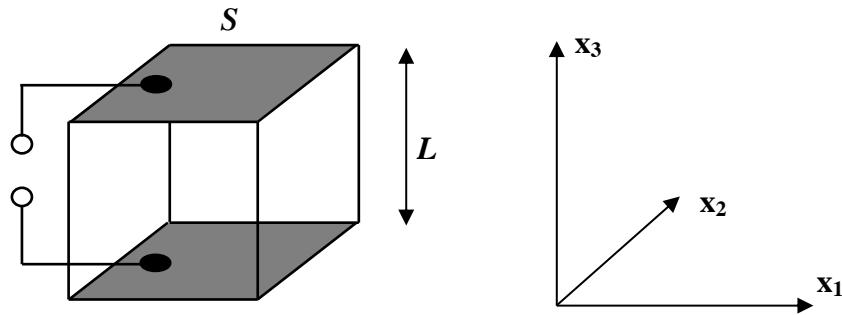


Fig.1. BaTiO_3 sample for pyroelectric measurements.


8.2 The material used is BaTiO_3 under isothermal conditions.

The effect of mechanical conditions on the capacitance is investigated. To do it, the (001) surfaces of the parallelepiped BaTiO_3 sample (distance between the (001) faces is L , the area of each (001) face is S) are covered with electrodes (fig.2), and the capacitance of the sample is measured.

In measurement (a), the sample is kept mechanically free.

In measurement (b), the sample is kept mechanically free in the x_1 and x_2 directions (i.e., in plane of capacitor), while the distance between electrodes L is forced to not change.

Show that the two measured capacitances $C_{(a)}$ and $C_{(b)}$ have different values. Calculate the relative difference between them $\frac{C_{(a)} - C_{(b)}}{C_{(a)}}$. All measurements are done at constant temperature.

Fig. 2. BaTiO_3 sample for capacitance measurements.